Water body information sheet for water body 4000 in Forth

General details

Water body name: River Tyne (Birns Water confluence to Estuary)

Water body Identifier code: 4000

Length: 23.88 km

Water body category: River

River basin district: Scotland
Area advisory group: Forth

Catchment: River Tyne

Associated protected River Tyne (Haddington to Estuary) - UWWTD SENSITIVE AREA

areas: (EXISTING)

Lothian / Borders - NITRATE VULNERABLE ZONE

River Tyne (Birns Water confluence to Haddington) - UWWTD

SENSITIVE AREA (EXISTING)

River Tyne - FRESHWATER FISH (EXISTING)

River Tyne (Source to Birns Water confluence) - UWWTD

SENSITIVE AREA (EXISTING)

Associated groundwater: Tyne Valley

Responsible body: SEPA

Edinburgh & Lothians

Heavily modified: No Artificial: No

Typology: Lowland

Medium Calcareous

National Grid Reference: NT 52533 74308

Latitude: 55.95943 Longitude: -2.76185

Current status of this water body

Classification results are updated annually, as part of SEPA's commitment to monitor and assess the condition of the environment.

Once the classification is agreed, as part of river basin management planning, the pressures and measures for every water body are reviewed to ensure that they reflect this improved understanding of the environment. Objectives are reviewed as part of the six yearly planning cycle and any proposed changes to objectives will be presented in the draft river basin plans http://sepa.org.uk/water/river_basin_planning.aspx.

This worksheet was produced using the most up to date classification results but the measures, pressures and objectives shown may not yet align to these classification results. Please contact rbmp@sepa.org.uk if you require further information on this water body.

We have classified this water body as having an overall status of Moderate with High confidence in 2012 with overall ecological status of Moderate and overall chemical status of Pass.

The overall classification of status is made up of many different tiers of classification data. A complete set of classification data for 2012 is shown at the end of this document.

Targets for the future status of this water body

We have set environmental objectives for this water body over future river basin planning cycles in order that sustainable improvements to its status can be made over time, or alternatively that no deterioration in status occurs, unless caused by a new activity providing significant specified benefits to society or the wider environment.

For this water body we have set the overall environmental objectives for the first, second and third River Basin Management Planning (RBMP) cycles as:

Year	2012	2015	2021	2027
Status	Moderate	Moderate	Good	Good
Year	2012	2015	2021	2027
Status	Moderate	Pass	Pass	Pass

Pressures and measures on this water body

We have established an ongoing programme of monitoring in order to identify pressures on our water bodies.

Water body information sheet for water body 4000 in Forth

The pressures listed below contribute to this water body's failure to meet good ecological status or potential. River basin planning allows us to plan improvements for particular parameters over time. We have collaborated with others to identify measures which will act to protect or improve our water environment in order that all water bodies reach good status over successive RBMP cycles.

The following table shows our collated information on the pressures on this water body, their causes and the measures which could be introduced to mitigate their effects. We have also indicated the current funding status of the measure; with projected measures being potentially funded and agreed measures having funding in place. Finally, we have included information on the potential or actual owner of the measure, the date it will be effective and information on the justification for extending the deadlines or for setting an alternative objective, where appropriate.

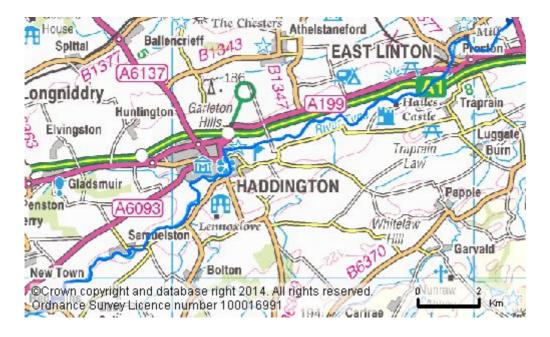
Pressure	As a Result of	Assessment Parameter	Objective	Reasons for Failure	
	Measure	Funding	Owner	Effective date	
Point Source Pollution	Sewage disposal	Phosphorus	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens	
	Increase treatment	Projected	Scottish Water	31/03/2013	
	Reduce at source	Agreed	Scottish Water	31/03/2013	
Point Source Pollution	Sewage disposal	Phosphorus	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens	
	Reduce Point Source Inputs	Projected	Scottish Water	31/03/2024	
Diffuse Source Pollution	Arable farming	Phosphorus	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens	
	Reduce Diffuse Source Inputs	Projected	Farmer(s)	31/12/2020	
Morphological Alterations	Impounding - weir / dam	Fish passage	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens	

Pressure	As a Result of	Assessment Parameter	Objective	Reasons for Failure
	Measure	Funding	Owner	Effective date
	Removal of barriers or provision of mechanisms to enable fish migration	Projected	Operator	31/12/2020
	Removal of barriers or provision of mechanisms to enable fish migration	Projected	Landowner(s)	31/12/2020
Abstraction	Arable farming	Change from natural flow conditions	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens
	Control Abstraction	Neither Agreed nor Projected	Farmer(s)	31/12/2020
Abstraction	Other beverage production	Change from natural flow conditions	Moderate by 2015	Implementation of the measure by an earlier deadline would impose disproportionate burdens
	Control Abstraction	Neither Agreed nor Projected	Operator	31/12/2020

Footnote – These results show current classification but the measures, pressures and objectives shown may not yet align to these classification results. Please contact rbmp@sepa.org.uk if you require further information on this water body.

Future work

Additional work to identify pressures and to develop and implement measures to mitigate their impacts will continue over subsequent river basin cycles.


Complete classification for this water body in 2012

Parameter	Status	Confidence of Class	
OVERALL STATUS	MODERATE	HIGH	
Pre-HMWB status	Moderate	High	
Overall chemistry	Pass	High	
Priority substances	Pass	High	
Benzo-a-pyrene	Pass	High	
Anthracene	Pass	High	
Atrazine	Pass	Low	
Benzo-(B+K)-Fluoranthene	Pass	High	
Cadmium	Pass	Low	
Chlorpyrifos	Pass	Low	
Fluoranthene	Pass	High	
Hexachlorobenzene	Pass	Low	
Isoproturon	Pass	High	
Lead	Pass	Low	
Naphthalene	Pass	High	
Nickel	Pass	Low	
pp-DDT	Pass	Low	
Simazine	Pass	Low	
Trifluralin	Pass	Low	
Endosulfan	Pass	Low	
Total HCH	Pass	Low	
Diethylhexylphthalate (DEHP)	Pass	High	
Chlorfenvinphos	Pass	Low	
Total Drins	Pass	Low	
Diuron	Pass	High	
Mercury	Pass	Low	
Total DDT	Pass	Low	
Overall ecology	Moderate	High	
Physico-Chem	Moderate	Medium	
Temperature	High	High	
Soluble reactive phosphorus	Moderate	Medium	
рН	High	High	
Dissolved Oxygen	High	High	
Biological elements	Moderate	High	

rameter	Status	Confidence of Class	
Phytobenthos	Moderate	High	
Macrophytes	Good	High	
Benthic invertebrates	Good	Medium	
Macro-invertebrates (acid)	High	Low	
Macro-invertebrates (RiCT)	Good	Medium	
Macro-invertebrates (ASPT)	Good	Medium	
Macro-invertebrates (NTAXA)	High	High	
Alien species	High	Low	
Fish	Moderate	Medium	
Fish ecology	High	Medium	
Fish barrier	Moderate	Medium	
Specific pollutants	Pass	High	
Arsenic	Pass	Low	
Diazinon	Pass	Low	
Linuron	Pass	High	
Permethrin	Pass	Low	
Iron	Pass	Low	
Copper	Pass	Low	
Zinc	Pass	High	
Dimethoate	Pass	Low	
2,4-D	Pass	High	
Mecoprop	Pass	High	
Ammonium	Pass	High	
Chromium	Pass	Low	
Hydromorphology	Moderate	Medium	
Morphology	Good	Medium	
Hydrology	Moderate	Medium	
Hydrology (impoundment)	Good	Medium	
Hydrology (abstraction)	Moderate	Medium	
Regulatory BOD	Good	Medium	
Regulatory ammonium	High	High	
Water quality	Moderate	High	
Morphological pressures	Moderate	Medium	

Location of this water body

You can find the geographical location of this water body by searching on water body ID in the interactive maps at www.sepa.org.uk/water/river_basin_planning.aspx

SEPA Contact Details: rbmp@sepa.org.uk
© 2012 Scottish Environment Protection Agency